8 Tenglamalar sistemasini yechishning grafik usuli(2 soat)
8-sinf, algebra.
(2 soatlik bayonnoma)
«17;19» – oktabr, 2018-yil.
Mavzu: Tenglamalar sistemasini yechishning grafik usuli.
1. Darsning maqsadi: birinchi darajali ikki noma’lumli ikkita tenglama sistemasi, sistemaning
yechimi, tenglamalar sistemasini yechishning qo‘shish usuli, tenglamalar sistemasini yechishning
grafik usuli, tenglamalar sistemasi grafiklarining o‘zaro joylashuvi kabilar yuzasidan tushunchalar
hosil qilish, o‘quvchilarning BKM larini shakllantirish, rivojlantirish va mustahkamlash.
2. Darsning usuli: savol-javob, misol va masalalar yechish.
3. Darsning jihozi: DTS ko‘rgazmalari, tarqatma materiallar, kichik testlar.
DARSNING BORISHI:
1. Tashkiliy qism: o‘quvchilar bilan salomlashish, tozalikni tekshirish, davomatni aniqlash,
o‘quvchilarning dars mashg‘ulotlariga ruhiy jihatda tayyorliklarini aniqlash.
2. O‘tilgan mavzuni so‘rab baholash:
Savol: Birinchi darajali ikki noma’lumli ikkita chiziqli tenglamalar sistemasining umumiy
ko‘rinishi qanday shaklda bo‘ladi?
Javob: Birinchi darajali ikki noma’lumli ikkita chiziqli tenglamalar sistemasining umumiy
ko‘rinishi quyidagicha yoziladi:
𝑎 𝑥 + 𝑏𝑦1 = 𝑐1
{ 1
bu yerda 𝑎1 , 𝑎2 , 𝑏1 , 𝑏2 , 𝑐1 , 𝑐2 – berilgan sonlar, 𝑥 va 𝑦 – noma’lum
𝑎2 𝑥 − 𝑏𝑦2 = 𝑐2
sonlardir.
Savol: tenglamalar sistemasining yechimi deb nimaga aytiladi?
Javob: tenglamalar sistemasining yechimi deb, shunday 𝑥 va 𝑦 sonlar juftligiga aytiladiki, ularni
shu sistemaga qo‘yganda uning har bir tenglamasi to‘g‘ri tenglikka aylanadi.
Savol: tenglamalar sistemasini yechish nima?
Javob: tenglamalar sistemasini yechish – uning hamma yechimlarini topish yoki ularning
yo‘qligini aniqlash demakdir.
Savol: tenglamalar sistemasini o‘rniga qo‘yish usuli bilan yechish qanday tartibda amalga
oshiriladi?
Javob: tenglamalar sistemasini o‘qniga qo‘yish usuli bilan yechish uchun dastlab, sistemaning bir
tenglamasidan (qaysi biri biri bo‘lsa ham farqi yo‘q) bir noma’lumni ikkinchisi orqali
ifodalash, hosil qilingan ifodani sistemaning ikkinchi tenglamasiga qo‘yish, hosil bo‘lgan
bir noma’lumli tenglamani yechib noma’lum sonning qiymatini topish, noma’lum sonning
topilgan qiymatini sistemadagi bir noma’lumni ikkinchisi orqali ifodalangan tenglamaga
qo‘yib, uning qiymatini topish kerak.
Savol: tenglamalar sistemasini qo‘shish usuli bilan yechish qay tartibda amalga oshiriladi?
Javob: tenglamalar sistemasini qo‘shish usuli bilan yechish uchun noma’lumlardan birining
oldida turgan koeffitsiyentlar tenglashtiriladi, hosil qilingan tenglamalarni hadlab qo‘shib
yoki ayirib, bitta noma’lum topiladi, topilgan qiymatni berilgan sistemaning
tenglamalaridan biriga qo‘yib, ikkinchi noma’lum topiladi.
3. O‘tilgan mavzuni mustahkamlasi: o‘quvchilar tushunmagan savollar va ularga tushunarsiz
4. Yangi mavzuning bayoni:
Ta’rif: ikki noma’lumli birinchi darajali 𝑎𝑥 + 𝑏𝑦 = 𝑐 tenglamaning grafigi deb, bu
tenglamaga x va y koordinatalarini qo‘yganda uni to‘g‘ri tenglikka aylantiruvchi 𝑀(𝑥; 𝑦)
nuqtalar to‘plamiga aytiladi.
Tenglamalar sistemasini yechishning grafik usuli quyidagicha bo‘ladi:
1) Sistema har tenglamasining grafigi yasaladi;
2) Yasalgan to‘g‘ri chiziqlar grafiklarining kesishish nuqtasining koordinatalari (agar ular
kesishsa) topiladi;
3) Grafiklar kesishish nuqtalarining koordinalari shu tenglamaning yechimi bo‘ladi.
YODDA SAQLANG: tenglamalar sistemasining nechta yechimga ega ekanligini grafiklar
yordamida osongina aniqlash munkin. Buning uchun tenglamalar sistemasi grafiklarining o‘zaro
joylashuvining quyidagi 3 ta holatini bilish lozim:
1) Agar tenglamalar sistemasining grafiklari kesishsa, ya’ni bitta umumiy nuqtaga ega
bo‘lishsa,u holda tenglamalar sistemasi bitta (yagona) yechimga ega;
2) Agar tenglamalar sistemasining grafiklari o‘zaro parallel bo‘lishsa, ya’ni ular umumiy
nuqtaga ega bo‘lishmasa, u holda tenglamalar sistemasi yechimlarga ega bo‘lmaydi;
3) Agar tenglamalar sistemasining grafiklari ustma –ust tushsa, u holda tenglamalar
sistemasi cheksiz ko‘p yechimga ega bo‘ladi.
Misol va masalalar yechish
84-misol. To‘g‘ri chiziqning koordinata o‘qlari bilan kesishish nuqtalarining koordinatalarini
toping:
Yechilishi:
1) 𝑥 − 𝑦 + 5 = 0
y
Dastlab, grafikning absissalar o‘qi bilan kesishish nuqtasini topamiz.
5
Bu nuqtaning ordinatasini nolga teng deb olamiz:
4
𝑥−0+5=0
𝑥 − 0 = −5
3
(−5; 0)
𝑥 = −5
2
Endi, grafikning ordinatalar o‘qi bilan kesishish nuqtasini topamiz.
1
Bu nuqtaning absissasini nolga teng deb olamiz:
0−𝑦+5= 0
x
O
-5
-4
-3
-2
-1
−𝑦 = −5
-1
(0; 5)
𝑦=5
2) 3𝑥 − 2𝑦 + 3 = 0
Dastlab, grafikning absissalar o‘qi bilan kesishish nuqtasini topamiz.
Bu nuqtaning ordinatasini nolga teng deb olamiz:
3𝑥 − 2 ∙ 0 + 3 = 0
3𝑥 − 0 = −3
3𝑥 = −3
(−1; 0)
𝑥 = −1
Endi, grafikning ordinatalar o‘qi bilan kesishish nuqtasini topamiz.
Bu nuqtaning absissasini nolga teng deb olamiz:
3 ∙ 0 − 2𝑦 + 3 = 0
0 − 2𝑦 = −3
−2𝑦 = −3
(0; 1,5)
𝑦 = 1,5
3) 2𝑥 + 𝑦 = 1
Dastlab, grafikning absissalar o‘qi bilan kesishish nuqtasini topamiz.
Bu nuqtaning ordinatasini nolga teng deb olamiz:
2𝑥 + 0 = 1
2𝑥 = 1
(0,5; 0)
𝑥 = 0,5
Endi, grafikning ordinatalar o‘qi bilan kesishish nuqtasini topamiz.
Bu nuqtaning absissasini nolga teng deb olamiz:
y
5
4
3
2
1
x
-2
O
-1
-1
y
2
1
x
-2
-1
O 0,5
-1
2𝑥 + 𝑦 = 1
2∙0+𝑦 = 1
0+𝑦 =1
𝑦=1
(0; 1)
4) 5𝑥 + 2𝑦 = 12
Dastlab, grafikning absissalar o‘qi bilan kesishish nuqtasini topamiz.
Bu nuqtaning ordinatasini nolga teng deb olamiz:
5𝑥 + 2 ∙ 0 = 12
5𝑥 = 12
(2,4; 0)
𝑥 = 2,4
Endi, grafikning ordinatalar o‘qi bilan kesishish nuqtasini topamiz.
Bu nuqtaning absissasini nolga teng deb olamiz:
5 ∙ 0 + 2𝑦 = 12
0 + 2𝑦 = 12
2𝑦 = 12
(0; 6)
𝑦=6
85-misol. Tenglamaning grafigini yasang:
Yechilishi:
1) 𝑦 = 3𝑥 + 5
𝑥 = 0 da 𝑦 = 3 ∙ 0 + 5 = 0 + 5 = 5, 𝑦 = 5;
𝑥 = −1 da 𝑦 = 3 ∙ (−1) + 5 = −3 + 5 = 2, 𝑦 = 2;
y
6
5
4
3
2
1
x
O
-1
1
2
-1
y
6
5
4
3
(0; 5)
(−1; 2)
2
1
x
-2
O
-1
1
-1
2) 3𝑥 + 𝑦 = 1 dan 𝑦 = 1 − 3𝑥 ga egamiz:
𝑥 = 0 da 𝑦 = 1 − 3 ∙ 0 = 1 − 0 = 1, 𝑦 = 1;
𝑥 = −1 da 𝑦 = 1 − 3 ∙ (−1) = 1 + 3 = 4, 𝑦 = 4;
y
4
(0; 1)
(−1; 4)
3
2
1
x
-2
O
-1
1
-1
−4−7𝑥
3) 2𝑦 + 7𝑥 = −4 dan 𝑦 =
𝑥 = 0 da 𝑦 =
−4−7∙0
𝑥 = −1 da 𝑦 =
=
−4
2
2
−4−7∙(−1)
2
2
= −2, 𝑦 = −2;
=
−4+7
2
y
ga egamiz:
3
= 2 = 1,5, 𝑦 = 1,5;
4
(0; −2)
3
2
(−1; 1,5)
1
x
-2
-1
O
1
-1
4) 4𝑦 − 7𝑥 − 12 = 0 dan 𝑦 =
𝑥 = 0 da 𝑦 =
12+7∙0
𝑥 = −1 da 𝑦 =
=
12
4
4
12+7∙(−1)
4
12+7𝑥
4
ga egamiz:
= 3, 𝑦 = 3;
=
12−7
4
5
= 4 = 1,25, 𝑦 = 1,25;
y
4
(0; 3)
3
(−1; 1,25)
2
1
x
-2
O
-1
1
-1
86-misol. 𝑦 = 2𝑥 + 1 va 𝑥 + 𝑦 = 1 tenglamalarning grafiklarini yasang. Ularning kesishish
nuqtasining koordinatalarini toping. Grafiklar kesishish nuqtasining
y
4
koordinatalari tenglamalarning har birini to‘g‘ri tenglikka aylantirishaylantirmasligini tekshirib ko‘ring.
Yechilishi:
1)
𝑦 = 2𝑥 + 1 ga egamiz:
(0; 1)
𝑥 = 0 da 𝑦 = 2 ∙ 0 + 1 = 0 + 1 = 1, 𝑦 = 1;
𝑥 = −1 da 𝑦 = 2 ∙ (−1) + 1 = −2 + 1 = −1, 𝑦 = −1; (−1; −1)
3
2
1
(0;1)
x
-2
-1
O
-1
1
2)
𝑥 + 𝑦 = 1 dan 𝑦 = 1 − 𝑥 ga egamiz:
𝑥 = 0 da 𝑦 = 1 − 0 = 1, 𝑦 = 1;
𝑥 = −1 da 𝑦 = 1 − 1 = 0, 𝑦 = 0;
(0; 1)
(−1; 0)
Tekshirish:
1)
1= 2∙0+1
1= 0+1
1 = 1 to‘g‘ri tenglik hosil bo‘ldi;
2)
1= 1−0
1 = 1 to‘g‘ri tenglik hosil bo‘ldi.
Javob: (𝑥 = 0, 𝑦 = 1).
88-misol. Quyidagi misollarda sistemani grafik usul bilan yeching:
Yechilishi:
𝑥+𝑦 =5
1) {
𝑥−𝑦 =1
𝑥 + 𝑦 = 5 dan 𝑦 = 5 − 𝑥 ga egamiz:
𝑥 = 0 da 𝑦 = 5 − 0 = 5, 𝑦 = 5.
𝑥 = 0, 𝑦 = 5
𝑥 = 1 da 𝑦 = 5 − 1 = 4, 𝑦 = 4.
𝑥 = 1, 𝑦 = 4
𝑥 − 𝑦 = 1 dan 𝑦 = 𝑥 − 1 ga egamiz:
𝑥 = 0 da 𝑦 = 0 − 1 = −1, 𝑦 = −1.
𝑥 = 1 da 𝑦 = 1 − 1 = 0, 𝑦 = 0.
Javob: 𝑥 = 3, 𝑦 = 2.
y
6
5
4
3
2
(3;2)
1
𝑥 = 0, 𝑦 = −1
𝑥 = 1, 𝑦 = 0
x
-1
O
1
2
3
-1
2𝑥 + 𝑦 = 1
2) {
2𝑥 − 𝑦 = 3
2𝑥 + 𝑦 = 1 dan 𝑦 = 1 − 2𝑥 ga egamiz:
𝑥 = 0 da 𝑦 = 1 − 2 ∙ 0 = 1 − 0 = 1, 𝑦 = 1.
𝑥 = 0, 𝑦 = 1
𝑥 = 1 da 𝑦 = 1 − 2 ∙ 1 = 1 − 2 = −1, 𝑦 = −1. 𝑥 = 1, 𝑦 = −1
y
2
1
x
O
-1
1
-1
2
(1;-1)
-2
2𝑥 − 𝑦 = 3 dan 𝑦 = 2𝑥 − 3 ga egamiz:
𝑥 = 0 da 𝑦 = 2 ∙ 0 − 3 = 0 − 3 = −3, 𝑦 = −3. 𝑥 = 0, 𝑦 = −3
𝑥 = 1 da 𝑦 = 2 ∙ 1 − 3 = 2 − 3 = −1, 𝑦 = −1. 𝑥 = 1, 𝑦 = −1
Javob: 𝑥 = 1, 𝑦 = −1.
𝑥 + 2𝑦 = 5
3) {
2𝑥 − 𝑦 = 5
5−𝑥
𝑥 + 2𝑦 = 5 dan 𝑦 = 2 ga egamiz:
𝑥 = 0 da 𝑦 =
𝑥 = 1 da 𝑦 =
5−0
2
5−1
2
5
y
2
(3;1)
1
x
-1
= 2 = 2,5, 𝑦 = 2,5.
𝑥 = 0, 𝑦 = 2,5
= 2 = 2, 𝑦 = 2.
𝑥 = 1, 𝑦 = 2
4
-3
O
1
2
3
-1
-2
-3
-4
2𝑥 − 𝑦 = 5 dan 𝑦 = 2𝑥 − 5 ga egamiz:
𝑥 = 0 da 𝑦 = 2 ∙ 0 − 5 = 0 − 5 = −5, 𝑦 = −5. 𝑥 = 0, 𝑦 = −5
𝑥 = 1 da 𝑦 = 2 ∙ 1 − 5 = 2 − 5 = −3, 𝑦 = −3. 𝑥 = 1, 𝑦 = −3
Javob: 𝑥 = 3, 𝑦 = 1.
-5
y
𝑥 + 3𝑦 = 6
4) {
2𝑥 + 𝑦 = 7
6−𝑥
𝑥 + 3𝑦 = 6 dan 𝑦 = 3 ga egamiz:
𝑥 = 0 da 𝑦 =
𝑥 = 3 da 𝑦 =
6−0
3
6−3
3
6
= 3 = 2, 𝑦 = 2.
3
= 3 = 1, 𝑦 = 1.
7
6
5
4
3
2
𝑥 = 0, 𝑦 = 2
(3;1)
1
x
𝑥 = 3, 𝑦 = 1
-1
O
-1
1
2
3
2𝑥 + 𝑦 = 7 dan 𝑦 = 7 − 2𝑥 ga egamiz:
𝑥 = 0 da 𝑦 = 7 − 2 ∙ 0 = 7 − 0 = 7, 𝑦 = 7.
𝑥 = 1 da 𝑦 = 7 − 2 ∙ 1 = 7 − 2 = 5, 𝑦 = 5.
Javob: 𝑥 = 3, 𝑦 = 1.
𝑥 = 0, 𝑦 = 7
𝑥 = 1, 𝑦 = 5
2𝑥 + 3𝑦 = 5
5) {
3𝑥 − 𝑦 = 2
5−2𝑥
2𝑥 + 3𝑦 = 5 dan 𝑦 = 3 ga egamiz:
𝑥 = 1 da 𝑦 =
5−2∙1
𝑥 = −2 da 𝑦 =
=
5−2
3
3
5−2∙(−2)
y
3
3
= 3 = 1, 𝑦 = 1.
9
= 3 = 3, 𝑦 = 3.
3
2
𝑥 = 1, 𝑦 = 1
(1;1)
1
𝑥 = −2, 𝑦 = 3
x
-3
-2
-1
3𝑥 − 𝑦 = 2 dan 𝑦 = 3𝑥 − 2 ga egamiz:
𝑥 = 0 da 𝑦 = 3 ∙ 0 − 2 = 0 − 2 = −2, 𝑦 = −2. 𝑥 = 0, 𝑦 = −2
𝑥 = 1 da 𝑦 = 3 ∙ 1 − 2 = 3 − 2 = 1, 𝑦 = 1.
𝑥 = 1, 𝑦 = 1
Javob: 𝑥 = 1, 𝑦 = 1.
O
1
-1
y
x
𝑥 − 2𝑦 = 4
6) {
2𝑥 − 𝑦 = 5
𝑥−4
𝑥 − 2𝑦 = 4 dan 𝑦 = 2 ga egamiz:
𝑥 = 0 da 𝑦 =
0−4
=
−4
2
=
2
-1
O
1
-1
2
3
(2;-1)
-2
= −2, 𝑦 = −2.
2
2
−2−4
−6
𝑥 = −2 da 𝑦 =
-2
-3
𝑥 = 0, 𝑦 = −2
-4
= −3, 𝑦 = −3. 𝑥 = −2, 𝑦 = −3
-5
2𝑥 − 𝑦 = 5 dan 𝑦 = 2𝑥 − 5 ga egamiz:
𝑥 = 0 da 𝑦 = 2 ∙ 0 − 5 = 0 − 5 = −5, 𝑦 = −5. 𝑥 = 0, 𝑦 = −5
𝑥 = 1 da 𝑦 = 2 ∙ 1 − 5 = 2 − 5 = −3, 𝑦 = −3. 𝑥 = 1, 𝑦 = −3
Javob: 𝑥 = 2, 𝑦 = −1.
89-misol. Tenglamalar sistemasi yechimga ega emasligini ko‘rsating:
Yechilishi:
𝑦 = 3𝑥
𝑥+𝑦 =6
1)
{
2)
{
3)
6𝑥 − 2𝑦 = 3
2𝑥 = 1 − 2𝑦
𝑥 + 𝑦 = 6| ∙ 2
−3𝑥 + 𝑦 = 0| ∙ (−2)
{
{
2𝑥 + 2𝑦 = 1
6𝑥 − 2𝑦 = 3
6𝑥 − 2𝑦 = 0
2𝑥 + 2𝑦 = 12
{
{
6𝑥 − 2𝑦 = 3
2𝑥 + 2𝑦 = 1
6𝑥 − 2𝑦 = 0
2𝑥 + 2𝑦 = 12
{−
{−
6𝑥 − 2𝑦 = 3
2𝑥 + 2𝑦 = 1
0 ≠ −3
Javob: yechimga ega emas.
0 ≠ 11
Javob: yechimga ega emas.
2𝑥 + 3𝑦 = 5| ∙ 3
3𝑥 + 4,5𝑦 = 6| ∙ 2
6𝑥 + 9𝑦 = 15
{
6𝑥 + 9𝑦 = 12
6𝑥 + 9𝑦 = 15
{−
6𝑥 + 9𝑦 = 12
{
0≠3
Javob: yechimga ega
emas.
90-misol. Tenglamalar sistemasi cheksiz ko‘p yechimga ega ekanligini ko‘rsating:
Yechilishi:
𝑥+𝑦 =0
𝑥−𝑦 =3
2𝑥 − 3𝑦 = 1
1)
{
2)
{
3)
{
2𝑦 + 2𝑥 = 0
2𝑥 − 2𝑦 = 6
4𝑥 − 6𝑦 = 2
𝑥 = −𝑦
{2𝑦 + 2𝑥 = 0
𝑥 = 3+𝑦
{
2𝑥 − 2𝑦 = 6
1+3𝑦
𝑥= 2
{
4𝑥 − 6𝑦 = 2
𝑥 = −𝑦
{2𝑦 − 2𝑦 = 0
1+3𝑦
𝑥=
𝑥 =3+𝑦
{
2(3 + 𝑦) − 2𝑦 = 6
{ 1+3𝑦 2
4∙
− 6𝑦 = 2
2
𝑥 = −𝑦
{
0=0
{
𝑥 = 3+𝑦
6 + 2𝑦 − 2𝑦 = 6
{
𝑥=
1+3𝑦
2
2 ∙ (1 + 3𝑦) − 6𝑦 = 2
1+3𝑦
𝑥 = 3+𝑦
{
6=6
{
𝑥= 2
2 + 6𝑦 − 6𝑦 = 2
{
𝑥= 2
2=2
1+3𝑦
Javob: cheksiz ko‘p yechimga ega, chunki grafiklar ustma-ust tushadi.
92-misol. Shunday tenglama tuzingki, u 𝑥 − 𝑦 = 4 tenglama bilan birgalikda: 1) birgina yechimga
ega bo‘lgan; 2) cheksiz ko‘p yechimga ega bo‘lgan; 3) yechimga ega bo‘lmagan sistemani tashkil
qilsin.
y
Yechilishi:
1
𝑥−𝑦 =4
1) {
x
𝑥 + 2𝑦 = 1
O
-1
1
2
3
𝑥 − 𝑦 = 4 dan 𝑦 = 𝑥 − 4 ga egamiz:
-1
𝑥 = 0 da 𝑦 = 0 − 4 = −4, 𝑦 = −4.
𝑥 = 0, 𝑦 = −4
(3′-1)
-2
𝑥 = 1 da 𝑦 = 1 − 4 = −3, 𝑦 = −3.
𝑥 + 2𝑦 = 1 dan 𝑦 =
𝑥=
𝑥=
1−𝑥
𝑥 = 1, 𝑦 = −3
-3
-4
ga egamiz:
2
1−(−1)
2
−1 da 𝑦 = 2 = 2 = 1, 𝑦 = 1.
1−3
−2
3 da 𝑦 = 2 = 2 = −1, 𝑦 = −1.
𝑥 = −1, 𝑦 = 1
𝑥 = 3, 𝑦 = −1
Javob: 𝑥 = 3, 𝑦 = −1.
2)
𝑥−𝑦 =4
2𝑥 − 2𝑦 = 8
𝑥 = 4+𝑦
{
2𝑥 − 2𝑦 = 8
𝑥 =4+𝑦
{
2(4 + 𝑦) − 2𝑦 = 8
𝑥 = 4+𝑦
{
8 + 2𝑦 − 2𝑦 = 8
𝑥 = 4+𝑦
{
8=8
{
3)
𝑥 − 𝑦 = 4| ∙ 2
2𝑥 − 𝑦 = 6
2𝑥 − 2𝑦 = 8
{
2𝑥 − 𝑦 = 6
{
0≠2
Javob: yechimga ega emas.
Javob: cheksiz ko‘p yechimga ega, chunki grafiklar ustma-ust tushadi.
5. O‘tilgan mavzuni mustahkamlash: o‘quvchilar tushunmagan savollarni aniq misollar yordamida
tushuntiraman.
6. O‘tilgan mavzuni so‘rab baholash:
Savol: ikki noma’lumli birinchi darajali tenglamaning grafigi deb nimaga aytiladi?
Javob: ikki noma’lumli birinchi darajali tenglamaning grafigi deb, bu tenglamaga x va y
koordinatalarini qo‘yganda uni to‘g‘ri tenglikka aylantiruvchi 𝑀(𝑥; 𝑦) nuqtalar
to‘plamiga aytiladi.
Savol: tenglamalar sistemasini yechishning grafik usuli qanday bo‘ladi?
Javob: tenglamalar sistemasini yechishning grafik usulida dastlab, sistema har tenglamasining
grafigi yasaladi, so‘ngra yasalgan to‘g‘ri chiziqlar grafiklarining kesishish nuqtasining
koordinatalari (agar ular kesishsa) topiladi. Grafiklar kesishish nuqtalarining
koordinalari shu tenglamaning yechimi bo‘ladi.
Savol: tenglamalar sistemasining nechta yechimga ega ekanligi nimaga bog‘liq?
Javob: tenglamalar sistemasining nechta yechimga ega ekanligini grafiklar yordamida osongina
aniqlash munkin. Buning uchun tenglamalar sistemasi grafiklarining o‘zaro joylashuvining
quyidagi 3 ta holatini bilish lozim:
– agar tenglamalar sistemasining grafiklari kesishsa, ya’ni bitta umumiy nuqtaga
ega bo‘lishsa,u holda tenglamalar sistemasi bitta (yagona) yechimga ega;
– agar tenglamalar sistemasining grafiklari o‘zaro parallel bo‘lishsa, ya’ni ular
umumiy nuqtaga ega bo‘lishmasa, u holda tenglamalar sistemasi yechimlarga ega
bo‘lmaydi;
– agar tenglamalar sistemasining grafiklari ustma –ust tushsa, u holda tenglamalar
sistemasi cheksiz ko‘p yechimga ega bo‘ladi.
7. Uyga vazifa:
87-misol. Quyidagi misollarda sistemani grafik usul bilan yeching:
Yechilishi:
𝑦 = 4𝑥
1)
{
𝑦−3=𝑥
𝑦 = 4𝑥 dan:
𝑥 = 0 da 𝑦 = 4 ∙ 0 = 0, 𝑦 = 0.
𝑥 = 0, 𝑦 = 0
𝑥 = 1 da 𝑦 = 4 ∙ 1 = 4, 𝑦 = 4.
𝑥 = 1, 𝑦 = 4
y
4
(1;4)
3
2
1
𝑦 − 3 = 𝑥 dan 𝑦 = 𝑥 + 3 ga egamiz:
𝑥 = 0 da 𝑦 = 0 + 3 = 3, 𝑦 = 3.
𝑥 = 1 da 𝑦 = 1 + 3, 𝑦 = 4.
Javob: 𝑥 = 1, 𝑦 = 4.
𝑦 = −3𝑥
2) {
𝑦 − 𝑥 = −4
𝑦 = −3𝑥 dan:
𝑥 = 0 da 𝑦 = −3 ∙ 0 = 0, 𝑦 = 0.
𝑥 = 1 da 𝑦 = −3 ∙ 1 = −3, 𝑦 = −3.
𝑦 − 𝑥 = −4 dan 𝑦 = 𝑥 − 4 ga egamiz:
𝑥 = 0 da 𝑦 = 0 − 4 = −4, 𝑦 = −4.
𝑥 = 1 da 𝑦 = 1 − 4, 𝑦 = −3.
Javob: 𝑥 = 1, 𝑦 = −3.
𝑦 = 2𝑥
3) {
𝑥 − 𝑦 = −3
𝑦 = 2𝑥 dan:
𝑥 = 0 da 𝑦 = 2 ∙ 0 = 0, 𝑦 = 0.
𝑥 = 1 da 𝑦 = 2 ∙ 1 = 2, 𝑦 = 2.
𝑥 − 𝑦 = −3 dan 𝑦 = 3 + 𝑥 ga egamiz:
𝑥 = 0 da 𝑦 = 3 + 0 = 3, 𝑦 = 3.
𝑥 = 1 da 𝑦 = 3 + 1 = 4, 𝑦 = 4.
Javob: 𝑥 = 3, 𝑦 = 6.
𝑦 = 3𝑥
4) {
4𝑥 − 𝑦 = 3
x
𝑥 = 0, 𝑦 = 3
𝑥 = 1, 𝑦 = 4
O
-1
1
-1
y
1
x
𝑥 = 0, 𝑦 = 0
𝑥 = 1, 𝑦 = −3
O
-1
1
-1
-2
𝑥 = 0, 𝑦 = −4
𝑥 = 1, 𝑦 = −3
-3
(1;3)
-4
y
6
(3;6)
5
𝑥 = 0, 𝑦 = 0
𝑥 = 1, 𝑦 = 2
4
3
2
𝑥 = 0, 𝑦 = 3
𝑥 = 1, 𝑦 = 4
1
x
-1
O
1
2
3
𝑦 = 3𝑥 dan:
𝑥 = 0 da 𝑦 = 3 ∙ 0 = 0, 𝑦 = 0.
𝑥 = 1 da 𝑦 = 3 ∙ 1 = 3, 𝑦 = 3.
y
(3;9)
9
𝑥 = 0, 𝑦 = 0
𝑥 = 1, 𝑦 = 3
8
7
6
5
4𝑥 − 𝑦 = 3 dan 𝑦 = 4𝑥 − 3 ga egamiz:
𝑥 = 0 da 𝑦 = 4 ∙ 0 − 3 = 0 − 3 = −3, 𝑦 = −3. 𝑥 = 0, 𝑦 = −3
𝑥 = 1 da 𝑦 = 4 ∙ 1 − 3 = 4 − 3 = 1, 𝑦 = 1.
𝑥 = 1, 𝑦 = 1
Javob: 𝑥 = 3, 𝑦 = 9.
4
3
2
1
x
O
-1
1
2
3
-1
-2
𝑦 = −𝑥
5) {𝑦 = 𝑥 + 2
𝑦 = −𝑥 dan:
𝑥 = 0 da 𝑦 = 0, 𝑦 = 0.
𝑥 = 1 da 𝑦 = −1, 𝑦 = −1.
-3
y
𝑥 = 0, 𝑦 = 0
𝑥 = 1, 𝑦 = −1
3
2
(-1;1)
𝑦 = 𝑥 + 2 dan:
𝑥 = 0 da 𝑦 = 0 + 2 = 2, 𝑦 = 2.
𝑥 = 1 da 𝑦 = 1 + 2 = 3, 𝑦 = 3.
Javob: 𝑥 = −1, 𝑦 = 1.
1
x
𝑥 = 0, 𝑦 = 2
𝑥 = 1, 𝑦 = 3
-2
O
-1
1
-1
-2
𝑦 =𝑥−1
6) {
𝑦+𝑥 =1
𝑦 = 𝑥 − 1 dan:
𝑥 = 0 da 𝑦 = 0 − 1 = −1, 𝑦 = −1.
𝑥 = 1 da 𝑦 = 1 − 1 = 0, 𝑦 = 0.
y
1
𝑥 = 0, 𝑦 = −1
𝑥 = 1, 𝑦 = 0
O
-1
𝑦 + 𝑥 = 1 dan 𝑦 = 1 − 𝑥 ga egamiz:
𝑥 = 0 da 𝑦 = 1 − 0 = 1, 𝑦 = 1.
𝑥 = 1 da 𝑦 = 1 − 1 = 0, 𝑦 = 0.
Javob: 𝑥 = 1, 𝑦 = 0.
(1;0)
x
1
-1
𝑥 = 0, 𝑦 = 1
𝑥 = 1, 𝑦 = 0
-2
91-misol. Tenglamalar sistemasi birgina yechimga ega ekanligini grafik usul bilan ko‘rsating:
Yechilishi:
2𝑥 + 3𝑦 = 13
4
1) {
3𝑥 − 2𝑦 = 13
13−2𝑥
2𝑥 + 3𝑦 = 13 dan 𝑦 = 3 ga egamiz:
y
5
3
2
𝑥=
𝑥=
13−2∙(−1)
13+2
15
−1 da 𝑦 =
=
= = 5, 𝑦
3
3
3
13−2∙2
13−4
9
2 da 𝑦 = 3 = 3 = 3 = 3, 𝑦 = 3.
3𝑥 − 2𝑦 = 13 dan 𝑦 =
𝑥 = 0 da 𝑦 =
𝑥 = 1 da 𝑦 =
3∙0−13
2
3∙1−13
2
=
=
3𝑥−13
2
= 5.
(5;1)
1
𝑥 = −1, 𝑦 = 5
x
-1
𝑥 = 2, 𝑦 = 3
O
1
2
3
4
5
-1
-2
-3
ga egamiz:
−13
= −6,5, 𝑦 = −6,5.
2
3−13
−10
= 2 = −5, 𝑦 = −5.
2
-4
-5
𝑥 = 0, 𝑦 = −6,5
-6
-6,5
𝑥 = 1, 𝑦 = −5
y
Javob: 𝑥 = 5, 𝑦 = 1.
2𝑥 + 𝑦 = 7
2) {
𝑥 − 2𝑦 = 1
2𝑥 + 𝑦 = 7 dan 𝑦 = 7 − 2𝑥 ga egamiz:
𝑥 = 1 da 𝑦 = 7 − 2 ∙ 1 = 7 − 2 = 5, 𝑦 = 5.
5
4
3
2
(3;1)
1
𝑥 = 1, 𝑦 = 5
x
𝑥 = 2 da 𝑦 = 7 − 2 ∙ 2 = 7 − 4 = 3, 𝑦 = 3.
𝑥 = 2, 𝑦 = 3
-1
O
-1
1
2
3
4
5
𝑥 − 2𝑦 = 1 dan 𝑦 =
𝑥 = 3 da 𝑦 =
𝑥 = 4 da 𝑦 =
3−1
2
4−1
2
𝑥−1
2
ga egamiz:
2
2
3
2
= = 1, 𝑦 = 1.
𝑥 = 3, 𝑦 = 1
= = 1,5, 𝑦 = 1,5.
𝑥 = 4, 𝑦 = 1,5
Javob: 𝑥 = 3, 𝑦 = 1.
4𝑥 − 𝑦 = 5
3) {
3𝑥 + 2𝑦 = 1
4𝑥 − 𝑦 = 5 dan 𝑦 = 4𝑥 − 5 ga egamiz:
𝑥 = 1 da 𝑦 = 4 ∙ 1 − 5 = 4 − 5 = −1, 𝑦 = −1.
𝑥 = 2 da 𝑦 = 4 ∙ 2 − 5 = 8 − 5 = 3, 𝑦 = 3.
3𝑥 + 2𝑦 = 1 dan 𝑦 =
𝑥 = 1 da 𝑦 =
𝑥 = 2 da 𝑦 =
1−3∙1
2
1−3∙2
2
=
=
1−3𝑥
2
1−3
2
1−6
2
Javob: 𝑥 = 1, 𝑦 = −1.
y
3
𝑥 = 1, 𝑦 = −1
2
𝑥 = 2, 𝑦 = 3
1
x
-1
ga egamiz:
O
-1
=
=
−2
2
−5
2
= −1, 𝑦 = −1.
𝑥 = 1, 𝑦 = −1
= −2,5, 𝑦 = −2,5.
𝑥 = 2, 𝑦 = −2,5
-2
-3
1
2
(1;-1)
Name:
Description:
…